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LETTER TO THE EDITOR 

First- and second-order phase transitions of infinifemstate 
Potts models in one dimension 

A N Berker, D Andelman and A Aharony? 
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 
02139. USA 

Received 27 August 1980 

Abstract. The q-state, ddimensional Potts models exhibit a variety of phase-transition 
behaviour in the limit d + li, q + 03, and I (d  - 1) In q finite. The regions I < 1, 1 < I < 2, 
and 2 < I are distinguished, respectively, by no transition, second-order transitions (with a 
new changeover phenomenon at I = In 4), and first-order transitions. The latter are due lo 
the condensation of effective vacancies. Critical and tricritical exponent values are given. 

Experimental realisations (Alexander 1975, Aharony et a1 1977) and connections with 
percolation (Fortuin and Kasteleyn 1969) are reasons for the current high interest in the 
phase transitions of the q-state Potts (1952) models. Another reason is a sustained 
conceptual development for spatial dimension d = 2, from rigorous (Baxter 1973, 
1979), conjectural (den Nijs 1979, Nienhuis et a1 1979, 1980b, Nauenberg and 
Scalapino 1980) and approximate (Nienhuis et a1 1979, 1980a, b) theories. These 
theories show that the phase transitions of the Potts models change from second to first 
order at q = q,(d), with q,(2) = 4 (Baxter 1973). For q < q,, the second-order tran- 
sitions can also turn first order at a tricritical point, for a sufficiently high concentration 
of vacancies (Berker et al 1978). The critical and tricritical behaviours coalesce at q,, 
and first-order transitions for q > qC result from a condensation of effective vacancies 
(Nienhuis et a1 1979). 

The relevance to experimental systems in d = 3 (Aharony ef a1 1977) makes it highly 
desirable to understand the d-dependence of qc. It has recently been shown exactly 
(Aharony and Pytte 1980) that q,(d) = 2 + E  i- O(& at d = 4 - E ,  but we are not aware of 
any other exact result at d f 2. One should hope that a combination of exact results at 
various values of d should make possible a reliable interpolation for qC of d = 3. An 
approximate calculational scheme in which d can be continuously varied is also highly 
desirable. The present work reports a particular form of the Migdal-Kadanoff (Migdal 
1975, Kadanoff 1976) renormalisation method which successfully fulfils this goal. In 
particular, our calculations seem to be either exact, or accurate in the limit d -* 1+, q -* CO 

with 1 = (d - 1) In q fixed and finite. In this limit, a new variety of (zero-temperature) 
yhase-transition behaviour is found and conveniently studied. 

The model exhibits no phase transition for 1 < lo = 1, and first-order transitions for 
1 > 1, = 2 due to condensation of effective vacancies. In the range lo < 1 < I,, we find 
critical and tricritical behaviours which vary smoothly with 1. The critical behaviour has 
a non-analyticity at l I  = In 4, where the ‘undiluted’ fixed point becomes unstable as a 
‘diluted’ one emerges from it. The critical and tricritical behaviours coalesce at I,. The 
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special values lo = 1 and 1, = 2 are independent of length-rescale factor b, and therefore 
appear to be exact. This implies that qc(d) increases as exp[2/(d - l)] for d + lC. 
Similarly, the tricritical exponents given below appear to be exact. The critical 
exponents, as well as the special value l1 = In 4, appear to be accurate (that is, insensitive 
to changes in 6 ) .  The results for the various exponents and fixed points are presented in 
figure 1. The renormalisation-group recursion relations given below are also useful for 
all 1 < d c 4  (Andelman, Berker and Aharony 1980, in preparation). They reproduce 
types of phase diagrams found before only for d = 2 (Nienhuis et a1 1979). As an 
example, in figure 2 are results for q,(d) = 4. 

Our new results should help in studying the behaviour of the Potts models in d > 1, 
where analogues of the special points lo and 11 are found (Andelman, Berker and 
Aharony 1980, in preparation). We also hope to stimulate discussion of the new types 
of behaviour in the one-dimensional limit and of the possibility of their exact nature. 

The renormalisation-group study (Nienhuis et a1 1979) of Potts models is within the 
context of the Potts lattice-gas (Berker et a1 1978), 

At each site i of a hypercubic lattice, the Potts variable si = a, b, c, . . . can take one of q 
values, S , ,  = l(0) for si = sj(si # si), and the lattice-gas variable ti = l(0) corresponds to 
an occupied (vacant) site. The sums (ij) are over all pairs of nearest-neighbour sites. In 
the limit G + m ,  all vacancies are removed from the system, and a conventional, 
undiluted Potts model is recovered. However, it is important that, in many regimes, this 
undiluted system is thermodynamically equivalent to a diluted Potts model with an 
increased length scale (Nienhuis et a1 1979). 

Our central results are best discussed with figures l(a, 6). For 1 < 1, there is no 
ordered phase. For 1 > 2, the phase transition between the ordered # 0) and 
disordered phases is of first order. For any 1 between 1 and 2, a surface of critical points 
constitutes the phase boundary in the space of interactions (J, F, G). This surface is 
bounded by a line of tricritical points. The critical points include the transition of the 
undiluted Potts model. The critical (y9) and tricritical (y:) exponents are given in 
figures l(a, b).  The exponent y2 is the inverse of the correlation length exponent, 
y2 = Y-', and gives the leading singularity at the phase transition. The exponent yk 
gives the exponent of crossover to criticality q5 = y:/y: (Riedel 1972). The negative 
exponents (irrelevant) y$ and ~ ' 8 ~  give the correction-to-scaling exponents yi/y2 
(Wegner 1972). Since yc4 is zero (marginal) at l1 =In 4 and I, = 2, logarithmic cor- 
rections are expected to power-law singularities (Nauenberg and Scalapino 1980). The 
discussion of the next paragraph suggests that the tricritical exponents? 

y: = 1, yk =2-1, Y k  = -1, f o r l s l s 2 ,  (2) 
are exact, whereas the empirical fits to the critical-exponent? data in figures l(a, b) ,  

y s  = 1 - 1 -0*46(1- 1)1'84, 

y$ =31-4-0*92(1-1)1'84 for 1 s l s l n 4 ,  

y4 = 1 - 1 - 7.33(2 - 1)9'27, 
y$ = 1 - 2 + 2*43(2 - 1)2'82 for In 4 s  1 s 2 ,  

are numerically accurate to the scale of figures 1. 
t The scaling fields of y k  (1 c 1 2) and y $  (1 1 c In 4) are e-F and e-O, respectively. 

(3) 
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Figure 1. Exponents and fixed-point locations of the 
Potts models in the limit d + lC and q + 00. Critical 
(c) and tricritical (t) properties obtained with length- 
rescale factor b = 1-01 are shown with full curves. 
Results with b = 4 are shown with broken curves, 
when distinguishable. The exponent y6 is --CO for 
1 c (d -  1) In q c l n  4. 

Figure 2. Exponents and fixed-point locations of the 
Potts models, obtained with the b = 2 Migdal- 
Kadanoff approximation for d = 1.78, which yields 
qc(d)  = 4. Critical (c) and tricritical (t) properties are 
shown. The broken curve in ( a )  is the extended den 
Nijs (1979) conjecture for d = 2,  qc(d)  = 4. Vertical 
segments appear at q = 1 due to a line of critical fixed 
points with continuously varying properties. 
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The Migdal-Kadanoff (Migdal197.5, Kadanoff 1976) Ienormalisation is effected by 
first choosing a superlattice composed of hypercubes of side b times the original lattice 
constant. The couplings (first two terms in equation ( l ) ,  see comment below) are moved 
to the edges of these hypercubes, and all degrees of freedom not at hypercube corners 
are summed over. This procedure is approximate in d > 1. In the naive limit d + l', it 
clearly becomes exact. In our combined limit d + 1+ and q + CO, its status is less obvious. 
However, circumstantial evidence here is rather favourable. The renormalisation was 
carried out for arbitrary length-rescale factor b. The changeover values lo = 1 and I, = 2, 
as well as the tricritical properties (equations (2)), turned out to be independent of b. 
This is characteristic of exact theories (Nelson and Fisher 1975) and suggests the 
exactness of this subset of information. The changeover value I1 = In 4 and equations 
(3) are obtained in the minimal rescaling limit of b + 1+. As b is increased, say to 4, In 4 
changes to In 4.034, and the properties in equations (3) are affected negligibly on the 
scale of figures 1. This suggests numerical accuracy. On the other hand, yg (In 4 C I < 2) 
does change, as seen in figure l (b) ,  and is therefore less reliable. Odd exponents, 
evaluated with b = 2 on!y, are yyt = 1, y;' = 0, y :  = -1, and yS monotonically decreas- 
ing from 0 at lo to -1 at I,, with a change of slope at 11. 

In order to obtain the phase-transition behaviour of Potts models in arbitrary d, we 
found that it is essential to use the Hamiltonian separation into coupling and on-site 
terms given in equation (1). This is also the physically most reasonable separation, 
minimising the effect of the bond-moving approximation both in the ordered and 
disordered limits (Emery and Swendsen 1977). The resulting recursion relations are 

x '  = 1 + (Ro - q - y ,  f' = R;2R2(Ro - q-l+ l), g'=R;l (Ro-q-lf l), 

R , = A ~ A : ( ~ + A : ) - ' + A ~ ~ A ~ ( ~ + A Z ) - ' ,  
w =f /2[g- l /2  - g1/2(1 - 2-1 + qx'-')]/2, (4) 

A ,  = w * ( q  + w2)l/', - 1/2 -1/2 A, = (g-l -f- g AF)/(l -x"-'>, 

where (In 2 = bd-lJ, In f= bd-lF, In g = G) and (In x '  = J ' ,  In f' = F', In g' = G') are 
respectively the bond-moved and renormalised interactions. The d + 1+ and q + CO 

limit is taken by introducing J = j + In q and F = P + In q. The phase diagram structure 
is in the space (j, $, G). The fixed-point locations are given in figures l(c, d) .  (A fixed 
point can be moved within its domain of attraction by changing the transformation, such 
as by varying b, with no physical consequence.) For 1 < Io ,  the ordered sink G*, .?* = CO, 

$* = 0 is unstable, and there is no phase transition. In lo < I < I,, the tricritical fixed 
points, unstable within the phase boundary surface, occur at G* = 0, .f* -In 2 = fi* = 
CO. In this range, the first-order transitions which are seen beyond the tricritical points 
for d > 1 have shrunk to infinity, as the tricritical points moved to fi* = 00 for d +1+. In 
lo < I < 11, the critical fixed points, which are stable within the phase boundary, occur at 
the undiluted limit G* = 00. Ir, II < I < I,, the critical fixed points traverse the diluted 
region to annihilate with the tricritical fixed point at I,. In I > I,, the stable fixed points of 
the phase boundary are those of first-order phase transitions, at G" = 0, j *  -In 2 = 

The recursion relations (4) are useful approximations in d > 1. Figures 2 are the 
analogues of figures 1, obtained for d = 1.78 and exhibiting qc=4. Resemblance 
between d + 1+ and d > 1 results is noticeable. A full account of our 1 < d s 4 results 
will be given elsewhere (Andelman, Berker and Aharony 1980, in preparation). 
Nevertheless, we cannot refrain from noting (figures 2) that, at q = 1, a line of critical 

P* = Co. 
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fixed points with continuously varying exponents is found. Thus, the vertical segment in 
figure 2(a)  is the range of these exponents yq (q = l), while y z  (q  = 1) = 0 is marginal in 
figure 2(b ) .  This could be of some importance to percolation phenomena (Klein et a f  
1978). 

We terminate with a phenomenological discussion of the physical mechanisms 
behind the changeover at I, or 4,. Consider low-temperature configurations as shown in 
figure 3. The unmarked regions represent complete local disorder. For high q, such 
regions have a multiplicity of about q per site. Clearly, they are entropically favoured at 
high q. They have no Potts-ordering influence on neighbouring localities, so that they 
act like clusters of effective vacancies (Nienhuis et a1 1975) in a grand canonical 
ensemble, with effective chemical potential = kT In q. This is reflected by an 
undiluted Potts model which is unstable under renormalisation (I > Id. As temperature 
is increased, two mechanisms compete: the surface tension between the ordered 
domains a and b decreases, and the chemical potential of the vacancies increases. A 
second- or first-order phase transition occurs, depending on whether the surface 
tension reaches zero ( I  < Zc), or the vacancies undergo a gas-liquid transition (I > IC), 
destroying the connectivity of the ordered domains. 

-7 
f l l  1 
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b 
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Figure 3. Typical configurations of Potts models which are important at low temperature. 
Two ordered domains, s = a and b, are shown. The unmarked regions are localities of 
complete disorder. For high-q models, these are entropically favoured, their condensation 
causing the first-order phase transition. 
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